

Progress of implementation of the GDH model in TALYS

A.Yu.Konobeyev, U.Fischer, P.E.Pereslavtsev

Institute for Neutron Physics and Reactor Technology, KIT

A.Koning

Nuclear Data Section, International Atomic Energy Agency

M.Blann

75-5865 Walua Rd. D423, Kailua-Kona, Hi. 967409, US

Objective

Discussion of implementation of the GDH model in the TALYS-1.74 code and results of test calculations

www.kit.edu

The hybrid and GDH model

J.J.Griffin, 1966 : exciton model

- G.D.Harp, J.M.Miller, B.J.Berne, 1968 : master-equation approach
- M.Blann, 1971 : "hybrid" model
- M.Blann, 1972 : "geometry dependent hybrid" model
- M.Blann, H.K.Vonach, 1983 :modification and basic improvements
- J.Bisplinghoff, 1986 : critical analysis. Configuration mixing
- 1994 : cluster emission in GDH
- M.Blann, 1996 : hybrid Monte Carlo simulation (HMS)
- 2005 : improvement of cluster emission calculation in GDH
- C.A.Soares Pompeia, B.V.Carlson, 2006 : new analysis
- 2010-2014 : further improvements

The GDH model

$$\frac{d\sigma}{d\varepsilon_x} = \pi \lambda^2 \sum_{l=0}^{\infty} 2l+1 T_l \sum_{n=n_0}^{n} X_x \frac{\phi (p-1,h,U)}{\phi (p,h,E)} \frac{\lambda_x^e}{\lambda_x^e + \lambda_x^+} g D_n$$

Emission and transition rate

$$\lambda_{x}^{e} = \frac{(2S_{x} + 1)\mu_{x}\varepsilon_{x}\sigma_{x}^{in\gamma}\varepsilon_{x}}{\pi^{2}\hbar^{3}g_{x}},$$

$$\lambda_{_{X}}^{_{+}}=V\,\sigma_{\!0}^{\prime}~\epsilon_{_{X}}^{}$$
) $\rho_{_{I}}$

Cluster emission

JEFF Meeting 4 November 30 – December 4, 2015

Exciton and hybrid model

different, sometimes close results

Uncertainty of calculated cross-sections, particle distributions etc.

GDH + TALYS TALYS-1.0, 2009 TALYS-1.2, 2011 TALYS-1.74 TALYS-1.0 (p,x) reactions, targets Z=12-83, E_p up to 150 MeV, N = 16,045

Factors	default models	GDH
$H = \left(\frac{1}{N}\sum_{i=1}^{N} \left(\frac{\sigma_{i}^{exp} - \sigma_{i}^{calc}}{\Delta\sigma_{i}^{exp}}\right)^{2}\right)^{0.5}$	20.3	20.9
$R^{CE} = \frac{1}{N} \sum_{i=1}^{N} \frac{\sigma_i^{calc}}{\sigma_i^{exp}}$	1.24	1.27
$R^{EC} = \frac{1}{N} \sum_{i=1}^{N} \frac{\sigma_i^{exp}}{\sigma_i^{calc}}$	2.33	1.98
$S = 10^{\left\{ \left(\sum_{i=1}^{N} \left[\frac{lg(\sigma_{i}^{exp}) - lg(\sigma_{i}^{calc})}{\left(\Delta \sigma_{i}^{exp} / \sigma_{i}^{exp}\right)} \right]^{2} \right) \left(\sum_{i=1}^{N} \left[\frac{\sigma_{i}^{exp}}{\left(\Delta \sigma_{i}^{exp}\right)} \right]^{2} \right)^{1/2}}$	1.33	1.33

GDH in TALYS-1.74

added subprograms: 55 modified ALICE/ASH subprograms: 30 new subroutines: 10

modified TALYS subroutines: 6

Memory load: +0.15 %

GDH: mpreeqmode=5

different GDH options: subroutine gdhinput

Nucleon energy distributions

JEFF Meeting 7 November 30 – December 4, 2015

JEFF Meeting 8 November 30 – December 4, 2015

JEFF Meeting 9 November 30 – December 4, 2015

JEFF Meeting 10 November 30 – December 4, 2015

JEFF Meeting 11 November 30 – December 4, 2015

JEFF Meeting 12 November 30 – December 4, 2015

JEFF Meeting 13 November 30 – December 4, 2015

Deuteron energy distributions

JEFF Meeting 14 November 30 – December 4, 2015

JEFF Meeting November 30 – December 4, 2015 16

JEFF Meeting 17 November 30 – December 4, 2015

JEFF Meeting November 30 – December 4, 2015 18

α -particle energy distributions

JEFF Meeting 19 November 30 – December 4, 2015

JEFF Meeting November 30 – December 4, 2015 20

JEFF Meeting 22 November 30 – December 4, 2015

Conclusion

The GDH model was implemented in TALYS-1.74

First test calculations were performed